Hot recombination of photogenerated ion pairs.
نویسندگان
چکیده
The recombination dynamics of ion pairs generated upon electron transfer quenching of perylene in the first singlet excited state by tetracyanoethylene in acetonitrile is quantitatively described by the extended unified theory of photoionization/recombination. The extension incorporates the hot recombination of the ion pair passing through the level-crossing point during its diffusive motion along the reaction coordinate down to the equilibrium state. The ultrafast hot recombination vastly reduces the yield of equilibrated ion pairs subjected to subsequent thermal charge recombination and separation into free ions. The relatively successful fit of the theory to the experimentally measured kinetics of ion accumulation/recombination and free ion yield represents a firm justification of hot recombination of about 90% of primary generated ion pairs.
منابع مشابه
Immobilizing photogenerated electrons from graphitic carbon nitride for an improved visible-light photocatalytic activity
Reducing the recombination probability of photogenerated electrons and holes is pivotal in enhancing the photocatalytic ability of graphitic carbon nitride (g-C3N4). Speeding the departure of photogenerated electrons is the most commonly used method of achieving this. To the best of our knowledge, there is no report on suppressing the recombination of photogenerated electron-hole pairs by immob...
متن کاملQuantum Zeno Effect in Radical-Ion-Pair Recombination Reactions
Radical-ion pairs are ubiquitous in a wide range of biochemical reactions, ranging from photosynthesis to magnetic sensitive chemical reactions underlying avian magnetic navigation. We here show that the charge recombination of a radical-ion-pair is a continuous quantum measurement process that interrogates the spin state of the pair. This naturally leads to the appearance of the quantum Zeno e...
متن کاملSynthesis of BiPO4/Bi2S3 Heterojunction with Enhanced Photocatalytic Activity under Visible-Light Irradiation
BiPO4/Bi2S3 photocatalysts were successfully synthesized by a simple two-step hydrothermal process, which involved the initial formation of BiPO4 rod and then the attachment of Bi2S3 through ion exchange. The as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), a...
متن کاملPhotocatalysts with internal electric fields.
The photocatalytic activity of materials for water splitting is limited by the recombination of photogenerated electron-hole pairs as well as the back-reaction of intermediate species. This review concentrates on the use of electric fields within catalyst particles to mitigate the effects of recombination and back-reaction and to increase photochemical reactivity. Internal electric fields in ph...
متن کاملPhotocatalytic Activities Enhanced by Au-Plasmonic Nanoparticles on TiO2 Nanotube Photoelectrode Coated with MoO3
Although TiO2 was formerly a common material for photocatalysis reactions, its wide band gap (3.2 eV) results in absorbing only ultraviolet light, which accounts for merely 4% of total sunlight. Modifying TiO2 has become a focus of photocatalysis reaction research, and combining two metal oxide semiconductors is the most common method in the photocatalytic enhancement process. When MoO3 and TiO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 123 24 شماره
صفحات -
تاریخ انتشار 2005